On a Class of Elliptic Functions Associated with Imaginary Quadratic Fields

نویسنده

  • LI-CHIEN SHEN
چکیده

Let −D be the field discriminant of an imaginary quadratic field. We construct a class of elliptic functions associated naturally with the quadratic field Q( √ −D) which, combined with the general theory of elliptic functions, allows us to provide a unified theory for two fundamental results (one classical and one due to Ramanujan) about the elliptic functions. §

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Class number formulas via 2-isogenies of elliptic curves

A classical result of Dirichlet shows that certain elementary character sums compute class numbers of quadratic imaginary number fields. We obtain analogous relations between class numbers and a weighted character sum associated to a 2-isogeny of elliptic curves.

متن کامل

Singular values of multiple eta-quotients for ramified primes

We determine the conditions under which singular values of multiple η-quotients of square-free level, not necessarily prime to 6, yield class invariants, that is, algebraic numbers in ring class fields of imaginary-quadratic number fields. We show that the singular values lie in subfields of the ring class fields of index 2 ′ −1 when k > 2 primes dividing the level are ramified in the imaginary...

متن کامل

Indivisibility of class numbers of imaginary quadratic fields

We quantify a recent theorem of Wiles on class numbers of imaginary quadratic fields by proving an estimate for the number of negative fundamental discriminants down to −X whose class numbers are indivisible by a given prime and whose imaginary quadratic fields satisfy any given set of local conditions. This estimate matches the best results in the direction of the Cohen–Lenstra heuristics for ...

متن کامل

Computations of elliptic units for real quadratic fields

Elliptic units, which are obtained by evaluating modular units at quadratic imaginary arguments of the Poincaré upper half-plane, allow the analytic construction of abelian extensions of imaginary quadratic fields. The Kronecker limit formula relates the complex absolute values of these units to values of zeta functions, and allowed Stark to prove his rank one archimedean conjecture for abelian...

متن کامل

Class numbers of ray class fields of imaginary quadratic fields

Let K be an imaginary quadratic field with class number one and let p ⊂ OK be a degree one prime ideal of norm p not dividing 6dK . In this paper we generalize an algorithm of Schoof to compute the class numbers of ray class fields Kp heuristically. We achieve this by using elliptic units analytically constructed by Stark and the Galois action on them given by Shimura’s reciprocity law. We have...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003